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The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by
transcriptional (cross-) regulation, expression patterns of increasing complexity along the anterior-posterior axis of
the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer
algorithm Ahab recovers known segmentation control elements (modules) with excellent success and predicts many
novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in
the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and
downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in
most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for
the entire set of known and newly validated modules that Ahab’s prediction of binding sites correlates well with the
expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show
that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor
Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function.
Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and
negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input,
we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a
primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the
number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for
binding site composition under a uniform set of criteria, permitting the definition of basic composition rules. The study
demonstrates that computational methods are a powerful complement to experimental approaches in the analysis of
transcription networks.
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Introduction

The development of higher eukaryotes depends on the
establishment of complex spatiotemporal patterns of gene
expression. Thus, an important key to understanding devel-
opment is to decode the transcriptional control of patterned
gene expression.

The segmentation gene network of Drosophila has long been
one of the prime paradigms for studying the role of
transcription control in pattern formation (Carroll 1990;
Rivera-Pomar and Jackle 1996). The regulation within the
network is almost entirely transcriptional, and many of the
cis- and trans-acting components are well characterized. The
network comprises maternal and zygotic factors that act in a
hierarchical fashion to generate increasingly refined and
complex expression patterns along the anterior-posterior
(ap) axis in the blastoderm embryo (St Johnston and Nusslein-
Volhard 1992; Driever 1993; Pankratz and Jäckle 1993;
Sprenger and Nüsslein-Volhard 1993; St Johnston 1993;
Furriols and Casanova 2003): The maternal factors form
gradients stretching along the entire ap axis; the zygotic gap
factors are expressed in one or more broad, slightly over-
lapping domains; the pair-rule genes are expressed in seven
stripes and segment-polarity genes in fourteen stripes,

prefiguring the segmental organization of the larva; finally,
the homeotic genes specify segment identity (for schematic
see Figure 6A).

Many of the segmentation genes are transcription factors
themselves; their principal targets are segmentation genes
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acting at the same level or below. From a large body of
genetic and molecular studies (for review see Akam 1987;
Cohen and Jurgens 1991; McGinnis and Krumlauf 1992; St
Johnston and Nusslein-Volhard 1992; Martinez Arias 1993;
Pankratz and Jäckle 1993), the following broad rules for
regulation within the network have been gleaned (cf.
schematic in Figure 6A): Gap genes receive input from the
maternal factors; the gap genes of the trunk heavily cross-
regulate, while the gap genes of the head do not. The pair-
rule genes are divided into a primary and a secondary tier:
The primary pair-rule genes generate their seven-stripe
pattern mainly through maternal and gap input, while the
secondary pair-rule genes depend on (primary) pair-rule gene
input; but the debate about which pair-rule genes belong to
the primary tier is not resolved (Carroll 1990; Klingler and
Gergen 1993; Klingler et al. 1996). Segment-polarity genes
receive pair-rule gene input, and the homeotic genes receive
both gap and pair-rule input.

Like other factors controlling the transcription of protein-
encoding genes, the segmentation gene transcription factors
bind to cis-regulatory elements, also called modules, and
positively or negatively regulate the recruitment of the basal
transcription machinery to the core promoter (for review see
Gray and Levine 1996; Arnone and Davidson 1997; Zhou et al.
1997; Blackwood and Kadonaga 1998; Roeder 1998; Naar et
al. 2001; Roth et al. 2001; Arnosti 2003). Specifically, the
maternal factors were found to act as activators, while the gap
factors act mostly as repressors; however, there is a body of
data suggesting that gap factors can act as activators or
repressors in a context-dependent fashion (see below).

The expression patterns of the segmentation genes are
typically complex, and in many cases different aspects of the
pattern are controlled by separate modules. An individual
module typically receives input from multiple transcription
factors and contains multiple binding sites for each of the
factors; in many cases the relevant binding sites are clustered
within a small interval of 0.5–1 kb. The combinatorial and
redundant nature of the input and its clustering are features
that are readily exploited for the computational detection of
transcriptional control elements.

We have recently developed an algorithm, Ahab, which uses
a thermodynamic model to detect cis-regulatory modules
(Rajewsky et al. 2002). Ahab uses binding site information for
multiple transcription factors participating in a common
process and seeks an optimal binding of the factors to a given
sequence window. Binding site information for the factors is
provided in the form of position weight matrices (Stormo
2000), which Ahab uses to infer binding energies. Ahab then
optimizes the total free energy of binding the factors to the
sequence. The factors compete for binding with a local
background model computed from the base composition
within the sequence window; the competition between factors
is treated as in standard thermodynamics. The result is then
the best partitioning of the sequence window into binding
sites and background. The total free energy under this
partitioning is taken as the score, and can be used to rank
modules. Thus, in contrast to other methods for module
detection (Berman et al. 2002; Halfon et al. 2002; Markstein et
al. 2002; Papatsenko et al. 2002; Rebeiz et al. 2002), Ahab
requires no predefined factor-dependent cutoffs, which
means that clusters of weak sites can be detected. We used
Ahab for a genome-wide prediction of segmentation gene

modules with maternal and gap input and found that it
recovers known modules with excellent success (Rajewsky et
al. 2002).
Here, we use Ahab to identify novel modules within the

segmentation gene network. We test 16 significant novel
predictions and find that 13 faithfully produce pattern
elements of the endogenous gene, while the remaining three
produce more or less aberrant blastoderm patterns. Our
combined computational and experimental analysis increases
the number of characterized segmentation modules by 50%
and provides effective de novo control region dissections for
ten of the 29 genes with gap and pair-rule patterns.
Furthermore, we systematically analyze Ahab’s prediction of
binding site composition for all experimentally validated
modules. By correlating the expression patterns of modules
with their binding site composition, we are able to show that
the composition of modules is generally well fitted to the
distribution of input factors, and we are able to determine
the mode of action for six of the nine maternal/gap input
factors. Finally, we explore Ahab’s predictive ability when
binding site information is less well defined, as is the case with
the pair-rule factors. Despite the handicap, Ahab traces the
global architecture of the segmentation gene network and
pinpoints the unexpected behavior of odd skipped as a primary
pair-rule gene.

Results

Prediction and Validation of Segmentation Modules
As the principal arena for our investigation, we selected the

top two tiers of the segmentation gene network, namely the
gap and pair-rule genes (for references see Dataset S1). Using
Ahab, we searched the genomic regions surrounding these
genes for cis-regulatory modules containing clusters of bind-
ing sites for maternal and gap factors.
As input for Ahab, we provided binding site information

(in the form of position weight matrices derived from the
literature; Dataset S2) for nine transcription factors: the
maternal factors Bicoid (Bcd), Hunchback (Hb), Caudal (Cad),
the Torso-response element (TorRE), and Stat92E (D-Stat),
and the gap factors Kruppel (Kr), Knirps (Kni), Giant (Gt),
and Tailless (Tll). Note that the weight matrices for Kni and
Tll are quite unspecific, which leads to an increased number
of binding site predictions. Conversely, the available binding
site information for D-Stat and Gt is rather limited and thus
appears artificially specific, resulting in fewer predictions.
Ahab was run over the genomic regions of 29 genes with gap
and pair-rule patterns consisting of 0.75 Mb of total genomic
sequence (see Materials and Methods). We experimented with
two adjustable parameters of Ahab, free energy cutoff and the
order of the background model, i.e., whether pairs or triples
of bases are used as background sequence. We favored the
lower order background, which is less stringent and increases
the number of factor binding sites, and set the free energy
cutoff at 15, which is approximately four standard deviations
above the mean of genome-wide window scores (Figure 1A).
The window size was set at 500 bp, which we had previously
found to deliver the most efficient recovery of known
modules (Rajewsky et al. 2002).
Under these conditions, Ahab predicts 52 modules within

the genomic region of the 29 genes of interest, an average of
about two modules per gene. This hit rate represents a 5-fold
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Figure 1. Ahab Predictions and Recovery of Known Modules

(A) Histogram of genome-wide window scores for the Ahab mg run (maternal/gap input, window size 500 bp, window shift 50 bp, background
model 2). As free energy cutoff we chose 15, which is approximately four standard deviations above the genome-wide mean (indicated by light
blue line).
(B) Pie chart summarizing results of Ahab predictions for gap and pair-rule genes, including recovery of known modules and testing of novel
predictions.
(C–F) For the genomic regions of selected gap and pair-rule genes, the free energy profiles of two Ahab runs (mg and mgpr) are shown. The free
energy cutoffs are marked by dotted lines; statistically significant predictions for the mg run are marked by black arrow heads (cf. Figure 4). In
the header above, the blastoderm expression pattern of the locus is depicted schematically, anterior to the left, posterior to the right. The
position of experimentally validated modules within the control region is delineated by colored bars; the aspect of the endogenous pattern they
drive is highlighted in matching color. Overall, the control regions of the gap genes hb and Kr and of the primary pair-rule genes eve and h are
computationally well delineated with maternal/gap input. References: (1) Schroder et al. (1988), (2) Margolis et al. (1995), (3) Hoch et al. (1990), (4)
Goto et al. (1989), (5) Fujioka et al. (1999), (6) Riddihough and Ish-Horowicz (1991), (7) Howard and Struhl (1990), and (8) Langeland and Carroll
(1993).
DOI: 10.1371/journal.pbio.0020271.g001

Figure 2. Expression Patterns Driven by Ahab-Predicted Modules I

Ahab-predicted modules in the control region of gap and pair-rule genes were tested by fusing putative modules to a basal promoter driving lacZ
(module-basal promoter-lacZ; Thummel and Pirrotta 1991). The genomic regions, with free energy profiles, for two Ahab runs (mg and mgpr) are
shown on the right. The free energy cutoffs are marked by dotted lines; mg run predictions with scores greater than 15 are marked by black
arrowheads, tested subthreshold peaks with scores below 15 by open arrowheads. The transcribed region of the locus is marked in blue, the
experimentally tested genomic regions are marked by pink bars and named according to distance from transcription start site to middle of the
enhancer, and previously known modules are marked by orange bars. The endogenous gene expression is shown on the left (blue frame), the
expression pattern driven by the module(s) in the center (pink frame). Embryos are oriented anterior to left, dorsal up. In a few cases, the
patterns driven by Ahab-predicted modules are unfaithful to the endogenous gene expression; we distinguish ‘‘unfaithful’’ and insertion-
dependent ‘‘unstable’’ patterns. For further description see text. (A) gt, (B) cnc, (C) oc, (D) D, (E) cad, (F) fkh, and (G) slp2. References: (1) Berman et
al. (2002), (2) Gao and Finkelstein (1998), (3) Lee and Frasch (2000), and (4) Pankratz et al. (1992) and Rivera-Pomar et al. (1995).
DOI: 10.1371/journal.pbio.0020271.g002
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enrichment compared to the genome-wide rate. Of the 52
predicted modules, 43 are located in intergenic regions, nine
in introns, and none in coding regions, indicating a bias of
the predictions toward transcriptional control regions. Of the
31 known modules, we recover 22 as significant predictions
(score .15; because of overlaps, 20 Ahab predictions cover
the 22 known modules), and three overlap with free energy
peaks just below the cutoff (Figure 1; cf. Figure 4). In the six
cases where Ahab misses known modules completely, the
reasons are most likely missing input factors (e.g., hkb_ven-
tral_element module; Hader et al. 2000) or a low number of
binding sites (e.g., ems_head module; Hartmann et al. 2001).
The likelihood of recovering 22 modules at random is
negligible (p , 10�8). We also predict 32 novel modules, and
we expect at least some predictions with scores below 15 to be
functional as well.

For experimental validation, we selected 16 module
predictions with scores greater than 15 and five with scores
below 15 (Figures 2 and 3), located near genes with gap and
pair-rule patterns whose control regions had not or only
partially been dissected: cad, cap ‘n’ collar (cnc), Dichaete (D), fork
head (fkh), gt, kni, knirps-like (knrl), nubbin (nub), ocelliless (oc), POU
domain protein 2 (pdm2), odd skipped (odd), and sloppy paired 2
(slp2). We used the free energy profiles to delineate the
module and then tested its ability to drive blastoderm
expression using a lacZ reporter construct (see Materials
and Methods). All of the predicted modules we tested drive
expression in the blastoderm. However, the faithfulness of the
patterns produced by the modules varies. Of the 16 modules
with scores greater than 15, 13 produce faithful patterns that
reproduce one or more aspects of the endogenous pattern,
two produce unfaithful patterns, and one has an unstable,
insertion-dependent pattern. Of the five modules with scores
below 15, two produce faithful and three produce unstable
blastoderm patterns. This indicates that Ahab has excellent
success in predicting modules driving blastoderm expression
and that the free energy cutoff is well chosen, with few false
positives and negatives. The fact that unfaithful or unstable
patterns are produced by some of the modules is likely a
reflection of the fact that Ahab makes predictions simply on
the basis of the total free energy without any explicit rules as
to the number and type of factors that have to contribute to
the binding. By comparing the composition of modules of
different degrees of faithfulness or stability, one can attempt
to formulate such rules (see below).

Using Ahab for the Dissection of Segmentation Gene
Control Regions

The gap gene gt is initially expressed in two domains in the
blastoderm, one anterior and one posterior; as cellularization
progresses, the anterior domain splits into two stripes, and,
finally, a third expression domain develops at the anterior
terminus. We predict three modules, gt_(�1), (�3), and (�6),
all of which we tested; in addition, we tested one subthreshold
peak further upstream, gt_(�10) (see Figure 2A). We can
account for all gt pattern elements: the subthreshold gt_(�10)
faithfully produces the anterior expression, gt_(�6) produces
the anterior tip expression, and the gt_(�3) module produces
the posterior expression (cf. Berman et al. 2002). Interest-
ingly, gt_(�1) is bifunctional and produces both the anterior
and the posterior expression domain.

The gap gene kni is expressed in two domains in the

blastoderm, one at the anterior tip and one in the posterior,
but only the module driving the posterior expression had
previously been identified (Pankratz et al. 1992). In addition
to the known module kni_kd, we predict two additional
modules, one further upstream, kni_(�5), and one in the first
intron, kni_(þ1). The kni_(�5) module faithfully produces
the expression at the anterior tip, while the kni_(þ1) module
drives an imprecise kni pattern with an aberrant anterior and
an abnormally widened posterior expression domain (see
Figure 3A). The sister gene knrl is expressed in the same
pattern as kni. We find two significant predictions in the
control region; we tested one, knrl_(þ8), which produces an
unfaithful pair-rule-like pattern (see Figure 3B).
The less well known gap genes nub and pdm2 are both

expressed in a broad posterior domain; pdm2, but not nub,
develops a segmental pattern during gastrulation. The
control regions of the two genes have not been dissected
(Kambadur et al. 1998). We find one significant prediction for
nub, nub_(�2), and two for pdm2, pdm2_(þ1) and (þ3).
nub_(�2) faithfully reproduces the posterior expression of
the gene (see Figure 3D). For pdm2, pdm2_(þ1) faithfully
reproduces the posterior domain as well as the segmental
expression of the gene, while pdm2_(þ3) produces line-
dependent variable patterns of blastoderm expression (see
Figure 3C).
The cad gene is expressed both maternally and zygotically.

Its zygotic expression in the blastoderm consists of a single
posterior stripe. We make a single significant prediction,
cad_(þ14), which faithfully reproduces the pattern (see
Figure 2E). fkh is initially expressed in a single domain at
the posterior end, to which a second domain at the anterior
end is added later in the blastoderm. We make a single
significant prediction, fkh_(�2), which faithfully produces the
early domain at the posterior end (see Figure 2F). The head
gap gene cnc is expressed in two domains, an anterior cap and
a collar. Our single significant prediction, cnc_(þ5), faithfully
produces the pattern (see Figure 2B). Similarly, the single
significant prediction for oc, oc_(þ7), faithfully produces the
single head gap domain of the endogenous gene (see Figure
2C). D is initially expressed in a broad domain encompassing
the entire segmented portion of the blastoderm embryo, and
an anterior patch is added at the end of the blastoderm. The
control region of D has not been dissected (Sanchez-Soriano
and Russell 2000). Our single significant prediction, D_(þ4),
faithfully produces the early blastoderm pattern (see Figure
2D).
Finally, the pair-rule genes: slp1 and slp2 are first expressed

in a gap-like pattern in the head, followed by expression in
seven and then fourteen stripes. The dissection of the
upstream region of slp1 had identified the stripe element
but not the gap-like expression in the head (Lee and Frasch
2000). We find a subthreshold peak upstream of slp2 that
nicely reproduces the missing head gap pattern (see Figure
2G). odd is first expressed in a pair-rule and then in a
segmental pattern and has traditionally been placed among
the secondary pair-rule genes, which are thought to generate
their pattern through pair-rule input rather than direct
maternal/gap input. Surprisingly, we find two significant
predictions in the upstream region of the gene, odd_(�3) and
(�5). Both these modules drive expression in two stripes:
odd_(�3) drives expression in stripes 3 and 6, while odd_(�5)
drives expression in stripe 1 and a broader region encom-
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Figure 3. Expression Patterns Driven by Ahab-Predicted Modules II

See legend for Figure 2. (A) kni, (B) knrl, (C) pdm2, (D) nub, and (E) odd.
DOI: 10.1371/journal.pbio.0020271.g003
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passing stripes 5 and 6 of the endogenous pattern (see Figure
3E). This behavior is reminiscent of the two-stripe modules of
eve (eve_stripe3_7 and eve_ stripe4_6). Thus, at least four of
the seven odd stripes are formed as individual stripes by
maternal/gap input rather than as a complete seven-stripe
pattern, indicating that odd has primary pair-rule character.

Overall, our experimental validation demonstrates that
Ahab is highly successful in predicting modules that drive
patterned expression in the blastoderm. The algorithm finds
missing modules that complement existing ones to collec-
tively produce the expression pattern of a gene and identifies,
with surprising accuracy, relevant modules in previously

Figure 4. Correlation of Expression Patterns with Module Composition

Based on the expression pattern they give rise to, known and newly validated modules are sorted into anterior, posterior, and terminal (if
expression bridges the 50% EL line, the module is labeled ant/post), and their binding site composition is evaluated using Ahab output from the
mg run. The expression pattern of a module is depicted schematically (anterior = 100% EL, left; posterior = 0% EL, right), followed by name of
gene, name of module, recovery as significant prediction (marked by X) or as subthreshold peak (marked by (X)) in D. melanogaster and D.
pseudoobscura, distance to the gene’s transcription start site (negative values denote upstream location), and binding site composition. For
references see Dataset S1. Expression patterns of previously known modules are in black, those of newly validated modules are in dark pink, and
modules with unfaithful/unstable patterns are in light pink. Binding site composition is given in the form of integrated profile values for
individual input factors (see Materials and Methods); higher color intensity emphasizes higher values. Diagnostic features are emphasized by
black trim: In anterior modules Bcd sites are overrepresented and Cad sites are underrepresented, while in posterior modules Cad sites are
overrepresented and Bcd sites underrepresented. Terminal modules are enriched in TorRE sites.
DOI: 10.1371/journal.pbio.0020271.g004
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undissected control regions. Most of the modules faithfully
produce pattern elements of the endogenous gene, suggesting
that our delineation of modules, which is based on the free
energy profile of the prediction, is generally quite accurate.

Module Composition and Pattern of Expression
Ahab’s success in finding modules encouraged us to

examine in greater detail its prediction of the binding site
content of modules. We sought to examine whether the
expression patterns of the previously known and our newly
tested modules correlate with their composition.

In its optimization procedure, Ahab fits all input factors
simultaneously to the genomic region of interest, while
experimental sites for transcription factors are typically
determined in the absence of any competition. Ahab reports
binding site composition in the form of integrated profile
values, which tally the fractional occupancy of sites for a
given factor, and are thus a measure of the strength of
binding by this factor (see Materials and Methods). In order to
gauge the accuracy of Ahab predictions of module compo-
sition, we examined how well Ahab performs in recovering
known binding sites (for detailed description see Materials
and Methods). Overall, the recovery of known sites ranges
from 50% to 100%, with the most specific factors/position
weight matrices showing the best recovery. The missed sites
are typically weak and are not misattributed to other factors
but rather to background. Thus, Ahab should provide a
reliable profile of module composition.

In order to correlate the binding site composition with the
ap expression pattern of the modules, we charted the
previously known modules and all the newly validated
modules with faithful expression and sorted them according
to their expression along the ap axis (see Figure 4). We ask
which, if any, features are diagnostic.

The Maternal Factors
In anterior modules (driving expression at 50%–100% egg

length [EL]), Bcd sites are overrepresented and Cad sites
underrepresented (see Figure 4), including seven known and
six newly tested modules. In posterior modules (driving
expression at 0%–50% EL), Bcd sites are underrepresented
and Cad sites overrepresented, including five known and five
newly tested modules. Finally, in terminal modules (driving
expression at 0%–20% and 80%–100% EL), TorRE sites are
strongly overrepresented, including four known and one
newly tested modules. In addition to the TorRE-terminal
signature, terminal modules expressed at the anterior
terminus often contain Bcd sites, and those expressed at the
posterior end, Cad sites. Thus, there is a strong positive
correlation between the expression pattern of the module
and the maternal input they receive, supporting the general
interpretation that the maternal factors act as transcriptional
activators in their realm of expression.

To take a closer look at this relationship, we computed for
each input factor and for every position along the ap axis the
average number of binding sites found in the modules driving
expression at that position. We plotted this number as a
function of ap position and compared the resulting curve
with the input factor distribution as determined by Reinitz
and coworkers (Myasnikova et al. 2001) (Figure 5A). For
TorRE, the distribution of binding sites beautifully follows
the expression profile of the input factor (as inferred from

expression of its negative regulator, Capicua), indicating that
binding sites are present almost exclusively where the cognate
factor is active. The distributions of Bcd and Cad binding
sites broadly conform with the anterior and posterior
gradients of their respective input factors. The rise in the
curves at the posterior terminus for Bcd and at the anterior
terminus for Cad is caused by terminal modules expressed at
both ends of the embryo. Overall, for the maternal activators,
the binding site composition of modules is well fitted to the
input factor distribution.

The Gap Factors
The situation regarding the gap factors is more complex.

When examining the distributions of Hb, Gt, and Kr binding
sites and comparing them with the input factor distributions,
we clearly find an anticorrelative relationship: The number of
sites is lower in regions where the cognate factor is present,
and higher in regions where the factor is absent (Figure 5A).
Remarkably, the number of sites is particularly high in
regions immediately adjacent to the expression domain of the
factor. These findings are consistent with the experimental
evidence that gap factors act as repressors. Thus, modules
which have many sites efficiently suppress expression within
the domain of the input factor, and permit expression only
outside the domain. The great majority of modules conform
to this anticorrelative relationship; we can therefore con-
clude that, overall, repression is the prevalent mode of action
for these gap factors.
However, we do find some modules that appear to be

coextensively expressed with the presumptive repressors.
One possible explanation is that the input factor has a
different mode of action in these modules, that is, instead of
repression it may mediate activation. Hb appears to be an
example for such a switch in the mode of action. We find
many modules with a small number of Hb sites that are
coextensively expressed with Hb in the anterior, and it has
been shown experimentally that Hb function is context
dependent: Repressor function has been demonstrated for
several posterior modules (e.g., kni_kd, eve_stripe3_7, and
eve_stripe4_6) (Pankratz et al. 1992; Fujioka et al. 1999),
while activator function has been demonstrated for several
anterior modules (e.g., hb_anterior, Kr_CD1, and eve_stripe2)
(Treisman and Desplan 1989; Hoch et al. 1990; Small et al.
1991; Stanojevic et al. 1991). It is thought that Hb is converted
from a repressor to an activator by the concurrent presence
of homeobox factors such as Bcd (Zuo et al. 1991; Simpson-
Brose et al. 1994). We examined the composition of these two
sets of known modules and found that in the posterior
modules, in which Hb acts as a repressor, the profile values of
Hb exceed those of Bcd, while in anterior modules, in which
Hb acts as an activator, the profile values of Hb are lower
than those of Bcd. When we apply the simple rule suggested
by this observation to all modules containing Hb sites, we find
that it significantly improves the picture: the Hb.Bcd (Hb as
repressor) set is strongly negatively correlated with Hb factor
expression, while the Hb,Bcd (Hb as activator) set is
positively correlated with Hb factor expression (the only
exception is the D_(þ4) module, which drives expression in a
broad domain straddling the 50% EL line). Thus, the global
distribution profile of Hb sites can largely be explained by
introducing a simple contextual rule.
By contrast, for Gt and Kr, the number of modules
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expressed coextensively with the input factor is compara-
tively small. In the case of Gt, all experimental evidence
points to its acting as a repressor. Increasing the spatio-
temporal resolution of the plot to reflect the modulation of
Gt expression over time may be sufficient to account for the
presence of Gt sites in at least some of the potentially
‘‘noncompliant’’ modules (cnc_(þ5), oc_(þ7), oc_otd_early,
and hb_ant). In the case of Kr, context-dependent function
has been suggested, but mostly based on tissue culture
experiments (Sauer et al. 1995; La Rosee et al. 1997; La
Rosee-Borggreve et al. 1999). The four potentially non-
compliant modules (Kr_CD2, run_stripe3, nub_(þ5),
D_(þ4)) are clearly expressed coextensively or overlapping
with the Kr input factor. Since the average number of
binding sites is low in these modules, it is possible that Kr
acts as a repressor but that this manifests itself only in a
reduced expression level. In fact, the Kr_CD2 module has
been noted to be more weakly expressed than its sister
module Kr_CD1, which lacks Kr sites (Hoch et al. 1990), but
there are too many other differences in their binding site
composition to draw any firm conclusions. These non-
compliant modules provide a solid experimental platform
for resolving the issue of whether or not Kr truly switches its
mode of action in vivo.

Finally, for Kni and Tll, most experimental evidence points
to repression, but context-dependent activation has been
suggested in a few cases (Langeland et al. 1994; Margolis et al.
1995; Kuhnlein et al. 1997; Hartmann et al. 2001). As noted at
the beginning, the weight matrices for both factors are fairly
unspecific (Figure 5B), resulting in a lower level of confidence
in the predictions, which typically show a large number of
binding sites. When plotting binding site and input factor
distributions, no clear positive or negative correlations are

visible (Figure 5A), suggesting either strong context-depen-
dent function—which is not really supported by the extant
literature—true indiscriminate binding, or simply poor
binding site information.

Unfaithful Modules
In our experimental tests, we found a few novel modules

that drive unfaithful patterns. Can we understand their
behavior based on the composition profile of the module? We
observed two flavors of unfaithful expression: strong invar-
iant and weak variable. The kni_(þ1)module is an example of
the former: It drives expression in a posterior domain that is
wider than the endogenous pattern (see Figure 3A). When
compared to the faithful kni_kd module, kni_(þ1) contains
the same types of binding sites, but with different profile
values: The profile values for the activator Cad are higher and
the ones for the repressors Hb, Kr, and Tll are lower (see
Figure 4). This suggests that an increase in activator binding
together with a decrease in binding by adjacently expressed
repressors may be responsible for the widening of the
posterior domain. The pdm2_(þ3) module is an example of
weak and unstable expression (see Figure 3C), which we find
more often when analyzing subthreshold peaks. Such modules
typically suffer from a reduced number of activator sites and
an increase in sites for coextensively expressed repressors (see
Figure 4). Thus, the two flavors of unfaithful patterns, strong
invariant and weak variable, appear to correlate with the
ratio of activator to repressor sites in the module and the
degree to which the distributions of the relevant input factors
are compatible. Further experimental and computational
work will be required to determine precise module compo-
sition rules, but both faithful and unfaithful modules can
contribute to defining them.

Figure 5. Ap Distribution of Binding Sites

and Cognate Input Factors

(A) Plots depict distribution of input
factors (black) along the ap axis (anterior
tip = 100, posterior tip = 0) (based on
Myasnikova et al. [2001]) and the average
number of binding sites (as measured by
integrated profile values; Figure 4) found
in all modules driving expression at a
given percent EL (red) (see Materials and
Methods). For TorRE, Bcd, and Cad, the
distributions of binding sites and input
factors are positively correlated. For Hb,
Gt, and Kr, the distributions are neg-
atively correlated; note that the number
of binding sites is particularly high in
modules expressed adjacent to the ex-
pression domain of these factors. In the
case of Hb, modules with more Hb sites
than Bcd sites (blue) show negative
correlation with input factor distribu-
tion, and modules with fewer Hb sites
than Bcd sites (green) show positive
correlation, indicating bimodal function
of Hb. For Kni and Tll, no clear
correlations are found, possibly because
of the unspecificity of their weight
matrices.
(B) Information scores of the Kr, Kni,
and Tll weight matrices.
DOI: 10.1371/journal.pbio.0020271.g005
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Evolutionary Conservation
The availability of the Drosophila pseudoobscura genome

makes it possible to ask how well segmentation modules are
conserved. In a previous study, Emberly et al. (2003) showed
that the degree of sequence conservation between D.
melanogaster and D. pseudoobscura is not significantly higher in
known segmentation modules than in surrounding non-
coding regions, suggesting that sequence conservation per se
is not sufficient to identify such modules. We obtain the same
result for our Ahab predictions (data not shown). However,
when we run Ahab over the aligned segmentation gene
control regions in D. pseudoobscura, using D. melanogaster weight
matrices as input, we recover as significant predictions about
the same number of known modules as in D. melanogaster,
indicating that there is substantial functional conservation (see
Materials and Methods). However, only 24 of the 35 known
and newly validated modules that are recovered in D.
melanogaster also score as significant predictions in D.
pseudoobscura, with an additional seven as subthreshold peaks
(see Figure 4). Conversely, four subthreshold D. melanogaster
modules are recovered as significant predictions in D.
pseudoobscura, and three known modules are recovered only
in D. pseudoobscura. Thus, modules with maternal/gap input
appear to be in some evolutionary flux, which needs to be
taken into consideration if evolutionary conservation is
employed as a tool in module discovery.

Regulatory Input within the Segmentation Gene Hierarchy
Given Ahab’s success in predicting modules with maternal

and gap input, we decided to expand the analysis to the entire
segmentation gene network and explore the algorithm’s
performance when less well defined binding site information
is available. To this end, we included the control regions of a
total of 48 genes: To the genes with gap-like and pair-rule
patterns, we added segment-polarity and homeotic genes (for
references see Dataset S1). Concurrently, we expanded the set
of binding site inputs. The maternal and gap factors were
used as before (mg run). In addition, we collected binding site
information from the literature for the pair-rule factors
Hairy (H), Even skipped (Eve), Runt (Run), Fushi tarazu (Ftz),
Ftz transcription factor 1 (Ftz-f1), Paired (Prd), and Tram-
track (Ttk) (Dataset S2). For all these factors the available
binding site information is generally less extensive and relies
less on in vivo and more on in vitro experiments such as
Selex. This again has the consequence that the weight
matrices are artificially more specific, resulting in the
prediction of fewer sites but higher scores for a match. The
pair-rule factors were run by themselves (pr run) and in
combination with the maternal and gap factors (mgpr run),
with window size 500 and background model 2.
In the combined control regions of the entire set of 48

segmentation genes, which total 1.7 Mb in length, we find 82
significant peaks for the mg run (score.15), 56 for the pr run
(score .15), and 69 for the mgpr run (score .22, cutoff set to
equal genome-wide mean plus four standard deviations), in
total 145 distinct putative modules, an average of approx-
imately three per gene. Interestingly, the mg run and pr run
peaks are completely nonoverlapping. We determined the

Figure 6. Module Predictions within the

Segmentation Gene Network

(A) Schematic depiction of the regulatory
relationships within the segmentation
gene network.
(B) Ahab-predicted modules in the con-
trol regions of segmentation genes were
classified based on their composition into
pair-rule driven (pr, red), maternal/gap
driven (mg, green), and mixed but pre-
dominantly pair-rule (pr(mg), light red)
or predominantly maternal/gap driven
(mg(pr), light green); see text for details.
For each gene, the number and type of
modules in the control region is shown;
grouping of genes is indicated by brackets
and follows the hierarchy as depicted in
(A). The type of regulatory input a gene
receives is indicative of its position within
the gene network.
DOI: 10.1371/journal.pbio.0020271.g006
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relative contribution of maternal/gap and pair-rule input to
each predicted module by evaluating its binding site
composition as revealed by the mgpr run, i.e., using all input
factors. Modules were classified into four types: maternal/gap
driven, pair-rule driven, or driven by both but with bias
towards maternal/gap input or pair rule input (see Materials
and Methods).

The number and types of modules found within the control
region of each target gene are shown in Figure 6B. For the
genes with gap-like expression, maternal and gap input
strongly predominates; for pair-rule and segment-polarity
genes, pair-rule input predominates. The homeotic genes
receive both types of input. This global result reflects very
well the overall regulatory structure of the segmentation gene
network. However, we find interesting exceptions to the
global rules. Among the pair-rule genes, odd stands out as
receiving unexpectedly strong maternal/gap input. odd is
expressed in a pair-rule and then segment-polarity pattern
(Coulter et al. 1990) and has traditionally been placed among
the secondary pair-rule genes (Klingler and Gergen 1993;
Pankratz and Jäckle 1993; Pick 1998). But as our dissection
reveals (see Figure 3E), odd receives strong maternal/gap input
and generates at least four of its seven stripes via two-stripe
modules, suggesting that it in fact belongs to the primary
pair-rule tier. In addition, as noted above, the control region
of the secondary pair-rule gene slp2 contains a subthreshold
peak with maternal/gap input that drives its early gap-like
expression in the head region (see Figure 2G).

Finally, we also examined the position of known and
predicted modules relative to the transcription start site of
the gene (Figure 7) We found that maternal/gap-driven (mg
run) modules are strongly biased toward the proximal
upstream region (�6 to 0 kb), the first 2 kb of intronic space,
and the proximal downstream region (þ2 to þ4 kb). This
clustering is found for the gap, pair-rule, and segment-

polarity genes, whose genomic organization is typically
simple, but not for the homeotic genes, which typically have
much larger control regions and multiple large introns, with
wide scattering of predicted modules. For pair-rule-driven
(pr run) modules, a similar though less pronounced clustering
is observed (data not shown).

Discussion

In this study we have demonstrated that the Ahab
algorithm can be used successfully for two purposes: the
prediction of novel segmentation modules within genomic
sequence and the prediction of module binding site
composition. The computational analysis of control regions
with Ahab dramatically improves the efficiency of the
experimental dissection, allowing us to significantly increase
the number of validated cis-regulatory elements from 31 to 46
and to provide effective de novo dissections for ten
segmentation genes. Two principal factors contribute to this
success. First, the existing experimental data for the
segmentation gene network provide a rich substrate for the
computational effort. Second, the biochemistry underlying
the regulation of transcription, that is, the binding of
transcription factors to DNA, is well described by equilibrium
thermodynamics (von Hippel and Berg 1986; Berg and von
Hippel 1987, 1988a, 1988b; Ptashne and Gann 2001), and thus
Ahab’s use of equilibrium conditions to predict the number,
type, and occupancy of binding sites within a window of
genomic sequence mimics the intrinsic process.
The global analysis of the segmentation gene hierarchy

shows that the prevalence of maternal/gap input strongly
correlates with gap-like expression, while the prevalence of
pair-rule input strongly correlates with segmental expression.
Integrating the inputs over all modules within the control
region of a gene provides a reliable indication of its type of
expression pattern and position within the hierarchy. In fact,
the integrated predictions are so accurate as to pinpoint
abnormalities in the gene classification, such as the known
head gap function of slp2, and also the hitherto unknown
primary pair-rule character of odd. Since our knowledge of
input factor sites is incomplete (particularly regarding the
pair-rule factors), these positive results are likely to reflect the
redundant and combinatorial nature of the input.
Ahab performs well not only in identifying modules, but

also in predicting their composition, thus permitting an
analysis of binding site composition under uniform criteria
for the entire set of known and newly validated maternal/gap-
driven modules. Gene expression studies in mutant embryos
have revealed the global regulatory interactions within the
segmentation gene network (St Johnston and Nusslein-
Volhard 1992; Pankratz and Jäckle 1993; Rivera-Pomar and
Jackle 1996; Furriols and Casanova 2003), but are not suited
to uncover redundancies within the network or to separate
direct from indirect effects. This becomes possible by
examining the inputs into the cis-regulatory modules. We
find that the vast majority of the modules expressed in the
early blastoderm contain maternal factor sites, which strongly
suggests that the maternal gradient systems of Cad, Hb, Bcd,
and Torso (through its transcriptional effectors) have most, if
not all, of the early zygotic patterning along the ap axis under
their direct control. Together with the strong interdepen-
dence of the maternal gradient systems, this massively parallel

Figure 7. Genomic Position of Modules

Position of modules predicted by the Ahab mg run relative to the
transcription start site of the cognate loci; predictions for the
homeotic genes are excluded. The number of modules found at a
given position is shown in blue. The black line indicates the
probability of a module occurring at a given position (calculated by
dividing the number of modules at a given position by the number of
control regions extending to that position). The stippled black line
shows that probability if modules were randomly distributed.
Modules with maternal/gap input are clustered within the first 6 kb
upstream, in the first 2 kb of intronic space, and around 2 kb
downstream (measured from the end of the gene).
DOI: 10.1371/journal.pbio.0020271.g007
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output would explain the coordinated and long-range effects
on segmentation gene expression patterns that are observed
when maternal factors are titrated up or down through
genetic manipulation.

Further, by correlating the binding site content of modules
driving expression at a given position with input factor
distributions, we are able to infer the mode of action for six
of the nine factors and to show that modules are generally
well fitted to the distributions of their positive and negative
input factors. The maternal factors act as activators within
their domain of expression, while the gap factors act largely
as repressors. This overall result confirms previously existing
data and demonstrates that the rules gleaned earlier from
rather small datasets generalize very well over the entire set.
Interestingly, our data also provide support for the idea that
Hb functions in a bimodal fashion and suggest a simple rule
for its context-dependent switch from repression to activa-
tion. Modules with few Hb and many Bcd sites drive
expression in the anterior half of the embryo, while modules
with more Hb than Bcd sites do not. Depending on module
composition and Bcd availability, Hb can thus activate
transcription; this Bcd/Hb synergy could serve to bolster
transcriptional activation in regions where Bcd levels taper
off. For Kni and Tll, the mode of action cannot be assessed on
the basis of the extant binding site information.

The comparison of modules with faithful and unfaithful or
unstable patterns provides some interesting additional clues
for composition rules, such as the ratio and compatibility of
activator and repressor sites. However, to address the
question of how the precise domain boundaries are
established within a given region of the embryo, a more
detailed examination of composition rules and of the
internal organization of modules will be needed, specifically
of rules governing the number, affinity, spacing, and
arrangement of binding sites. This analysis will require
different types of experimentation as well as additional
computational analysis.

The performance of Ahab is influenced by a number of
parameters, but the most important is the quality of the input
factor weight matrices. To further improve weight matrices,
more sites for undersampled factors will have to be collected
(D-Stat and Gt), and existing sites for the unspecific factors
will have to be scrutinized (Kni and Tll). More importantly,
the relative affinity of binding sites for their factor will have
to be measured in a more comprehensive fashion. The ideal
experiment would measure, under identical conditions, the
relative binding affinity of the consensus sequence to all
possible single base mutations in the consensus binding site
(Benos et al. 2002). For some segmentation modules, the
currently predicted binding site composition is clearly
insufficient to explain their expression, indicating that some
of the relevant input has not been characterized. We have
experimented with motif-finding algorithms and found that
novel, biologically functional binding motifs can be identified
by searching for locally overrepresented motifs within known
modules and filtering out the known input factor binding
sites (see Rajewsky et al. 2002; J. F., M. P., M. D. S., and U. G.,
unpublished data), which suggests that computational meth-
ods can also assist the identification of novel input factors.

With an Ahab run that recovers 70% of the known modules
with predominant maternal/gap input, we predict another 32
putative modules in the control regions of gap and pair-rule

genes. Most of these look plausible in terms of genomic
location and composition, and as our validation shows, many
drive blastoderm expression that faithfully reproduces the
endogenous pattern of the gene. However, we also found
modules whose expression does not match the endogenous
pattern (unfaithful/unstable) or whose composition does not
suggest any coherent expression pattern (e.g., no activator
sites); among the latter are some predictions dominated by
Kni and Tll sites, which are potentially problematic because
of the unspecificity of their weight matrices. The apparently
anomalous modules could drive expression at later stages of
development or could simply be artifacts of improper
delineation or missing relevant input. A more intriguing
possibility is that some of these modules are in evolutionary
transit—nascent or dying. Such modules might be held in
check by relatively few point mutations (‘‘pseudo’’ modules),
by nearby insulator elements, or by restricted access to the
basal promoter when competing with the functional modules.
The effort to discover the true nature and function of these
anomalous modules will be aided by the computational and
experimental comparison of corresponding modules in D.
melanogaster and D. pseudoobscura.

Materials and Methods

Position weight matrices and Ahab runs.When possible, previously
compiled position weight matrices were used: for Bcd, Hb, Cad,
TorRE, Kr, Kni, and Tll (Rajewsky et al. 2002), and for Ftz, Prd_HD,
and Ttk (Papatsenko et al. 2002). For H, Run/CBF, and D-Stat, we
directly used in vitro selection data (Melnikova et al. 1993; Van Doren
et al. 1994; Yan et al. 1996). For Eve_HD, the alignment was taken
from the literature (Hoey et al. 1988), for Gt, Eve_t2, and Ftz-f1,
footprinted sites from the literature were aligned (Hoey et al. 1988;
Biggin and Tjian 1989; Ueda et al. 1990; Jiang et al. 1991; Capovilla et
al. 1992; Fujioka et al. 1996; Florence et al. 1997; Yu et al. 1997;
Shimell et al. 2000). The binding sites, alignments, and weight
matrices used plus references are listed in Dataset S2. For description
and mathematical details of the algorithm, see Rajewsky et al. (2002).
All runs were carried out on Drosophila genome sequence Release 2
after masking tandem repeats in the genomic sequence as described
in Rajewsky et al. (2002). Control regions were defined as the
sequence surrounding a gene and limited by the two flanking genes,
up to a maximum of 20 kb upstream and 10 kb downstream, and with
a buffer for the flanking genes of 2 kb upstream and 1 kb
downstream. For the homeotic genes, no maximum for the upstream
or downstream extension of the control region was imposed.

Mapping of known modules. The genomic position of known
modules was derived from literature (Papatsenko et al. 2002; Rajewsky
et al. 2002) or mapped to genomic sequence from the literature using
restriction sites, PCR primers, or distances relative to transcription
start site. For a complete list and description see Dataset S3.

Significance of Ahab predictions. To assess the significance of Ahab
module predictions, we calculated the overlap between predictions
and known modules in basepairs, and compared it with the overlap
achieved when predictions are randomly placed within the delineated
control regions (minus masked and coding sequence). We failed to
match the actual overlap through 108 randomizations, resulting in an
estimate of p , 10�8 for the significance of the recovery of known
modules by Ahab. When we remove from the calculation the 13
modules that were used for the construction of weight matrices
(Kr_CD1, Kr_CD2_AD1, eve_stripe3_7, eve_stripe2, h_stripe5,
h_stripe6, hb_anterior_actv, hb_central_&_posterior_actv, kni_kd,
oc_head, tll_K2, tll_P2, and tll_P3), along with the kni, hb, and tll
control regions, which contain no additional annotated modules, we
find p = 4.93 10�6.

Ahab recovery of known binding sites. The experimental binding
sites that define our weight matrices are derived from a variety of in
vitro experiments that typically neglect competition between tran-
scription factors, whereas Ahab, in its prediction of binding sites, fits
all factors simultaneously. To gauge whether Ahab can be used as a
predictor of module composition, we examined what fraction of
known binding sites the algorithm recovers. The only free parameter
in the comparison is the profile value (between 0 and 1), which
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measures the fractional occupancy of a site by its factor; a profile
value of 1 means that a site is always occupied by its factor. A site was
scored as found if the prediction exceeded a certain profile value
cutoff and overlapped the experimental footprint by more than 50%.
Table 1 correlates the recovery of sites with the specificity of the
weight matrices for two profile value cutoffs. Overall, the recovery
ranges from 50% to 100%, with the most specific factors/matrices
showing the best recovery.

We further examined whether Ahab misses known sites by
misclassification. We found that Ahab generally does not misattribute
the missing sites to another factor. A cogent example is provided by
Cad and Hb, which have very similar binding sites containing an
oligoT stretch. Surprisingly, none of the 21 Hb sites that were missed
at a profile value cutoff of 0.5 were misclassified as Cad; conversely,
only one of the 11 missed Cad sites was classified as Hb. This
discrimination is far better than that achieved by a simple weight
matrix scan over the same modules: for this scan, we counted
information scores greater than five, which is the score of the weakest
experimental binding sites, and overlaps between matrix and binding
site of 50% or more. The matrix scans correctly classified 29/43 Hb
sites and 16/21 Cad sites; but misclassified five Hb sites as Cad and two
Cad sites as Hb. Taken together, Ahab finds the majority of known
binding sites and rarely misclassifies; it is thus a reliable indicator of
module composition. A complete listing of the integrated profile
values reported by Ahab for known, newly validated, and predicted
modules is available in Dataset S6 (mg run) and Dataset S7 (mgpr
run).

Recovery of modules in Drosophila pseudoobscura. To assess the
conservation of known and Ahab-predicted modules, we aligned D.
melanogaster and D. pseudoobscura genomic sequence as described in
Emberly et al. (2003) and ran Ahab over the aligned D. pseudoobscura
control regions, with D. melanogaster weight matrices as input and with
cutoffs for significant predictions (15 in D. melanogaster) and
subthreshold peaks (12 in D. melanogaster, equal to genome-wide
mean plus three standard deviations) set to obtain equivalent
numbers of predictions in D. pseudoobscura. D. pseudoobscura predic-
tions were then mapped to D. melanogaster coordinates and examined
for overlap with the known and predicted D. melanogaster modules.

Processing of Ahab output and module classification. To associate
predictions from different Ahab runs, each run was processed and
the highest point on the free energy plot within an interval of the
window size was marked as a ‘‘peak.’’ Peaks are thus spaced by at least
the window size. Peaks in two different runs correspond if they are
closer than half the window size; their correspondence is unique and
order independent. For the three-way comparison, the mg and pr
runs were separately compared to the mgpr run. In no case did mg
run and pr run peaks correspond without at least one of them
matching a mgpr run peak.

For the purposes of broadly classifying predicted modules as to
type of input, we defined four classes: mostly maternal/gap input,

mostly pair-rule, and mixed input but with a bias towards maternal/
gap or pair-rule. Two classification methods were used. The first
relied on a single Ahab run with all factors (mgpr run) and then
compared the sum of the maternal/gap factor profile values for a
given module with the sum of the pair-rule profile values, after
normalization to make the mean and standard deviation of maternal/
gap profile values over all peaks equal to the mean and standard
deviation of all pair-rule profile values. An alternative scheme used
the free energy plots for the three runs (mg, pr, and mgpr), identified
corresponding peaks, and then compared their rank in the different
runs. The two methods yielded very similar results.

Since Ahab does not adapt its window size to the data, modules
that are wider than the window size needed to be delineated to be
captured accurately. To this end, we defined the start of the module
as the first local maximum in the free energy plot that is above the
cutoff. The end point was initialized as the other end of the
corresponding Ahab window. The plot was then scanned from left to
right, and when another local maximum or rise in window score
above the cutoff was encountered, the end point of the module was
reset as the end of the corresponding window. The sequence of all
delineated predicted modules is available in Dataset S5.

Molecular biology and RNA in situ hybridization. Module
predictions were tested as follows. The module was delineated within
the genomic sequence as described above and further expanded to
include good primer sites for touch-down PCR. Primers were
designed following manufacturer’s guidelines (Clontech, Palo Alto,
California, United States), restriction sites (Xba, Asp718) were added
for subsequent cloning. Genomic PCR products were cloned into
TOPO (Invitrogen, Carlsbad, California, United States), sequenced to
confirm identity, and subcloned into Casper hs43GAL (Thummel and
Pirrotta 1991). A Fasta file with the primers and cloned regions is
available in Dataset S4.

Transgenic fly strains were generated using standard methods. For
each construct three independent insertions were analyzed for
expression patterns by RNA in situ hybridization with a lacZ probe.
RNA in situ hybridizations were carried out as described by
Noordermeer and Kopczynski (http://www.fruitfly.org/about/methods/
RNAinsitu.html).

Delineation of protein and transcript patterns. The protein
expression profiles of the maternal and gap input factors were
obtained from http://flyex.ams.sunysb.edu (Myasnikova et al. 2001)
(temporal class 4, 10% strip, normalized and registered by FRDWT,
averaged over 5% EL). In cases where these data were not available,
input factor expression profiles were inferred from literature (D-Stat)
or our own data (TorRE, measured by expression of the negative
regulator Capicua). The output transcript patterns of segmentation
gene modules were determined using images of our own RNA in situ
hybridizations of blastoderm embryos, and complemented by data
from the literature. Embryos were viewed in the sagittal plane, and
the intersection of the domain boundaries with the longitudinal axis

Table 1. Recovery of Known Binding Sites

Factor Profile Value . 0.25 Profile Value . 0.5

Recovery WM Specificity Recovery WM Specificity

Dstat 2/2 0.88 2/2 0.81
TorRE 4/4 0.78 4/4 0.64
Tll 11/17 0.52 8/17 0.34
Bcd 24/39 0.75 21/39 0.60
Hb 30/43 0.70 22/43 0.45
Gt 4/6 0.69 3/6 0.54
Kni 14/27 0.48 11/27 0.29
Kr 13/23 0.78 12/23 0.60
Cad 12/21 0.59 10/21 0.43

The table shows the fraction of known maternal and gap factor binding sites recovered by Ahab, with profile value cutoffs of 0.25 and 0.5, respectively. The specificity of the
weight matrices (‘‘WM Specificity’’) is characterized in terms of the distribution of profile values reported by Ahab when run over the sequence of all modules containing
known binding sites. The numbers indicate the portion of profile values that exceed the cutoff compared to all profile values; for example, column five for Kr means that 60%
of the predicted sites have a profile value greater than 0.50.
DOI: 10.1371/journal.pbio.0020271.t001
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was determined and calculated as percent EL. Measurements were
performed using the Zeiss (Oberkochen, Germany) Axiovision 3.1
measurement tool and averaged over 2–5 embryos. A complete listing
of the references for the expression patterns of segmentation genes is
found in Dataset S1. To generate the plots in Figure 5A, we
calculated, for every input factor and for every position along the
ap axis, the average of the integrated profile values reported by Ahab
for the modules driving expression at that position. Values were
calculated in 1% EL increments, then averaged over 5% EL.

Supporting Information

The Gbrowse display of free energy profiles for genome-wide Ahab
runs (mg, pr, mgpr) can be viewed at http://edsc.rockefeller.edu/
cgi-bin/gbrowse_ms/cgi-bin/gbrowse?src=fly.

Dataset S1. Segmentation Genes Referred to in This Study

The dataset gives name, symbol, flybase identifier, and references for
expression pattern, control region dissection, and binding site
information.

Found at DOI: 10.1371/journal.pbio.0020271.sd001 (178 KB DOC).

Dataset S2. Compilation of Position Weight Matrices and Binding
Sites Used in This Study

Found at DOI: 10.1371/journal.pbio.0020271.sd002 (8 KB TXT).

Dataset S3. Sequence Information for Known Segmentation Modules
in Fasta Format

Found at DOI: 10.1371/journal.pbio.0020271.sd003 (80 KB TXT).

Dataset S4. Sequence Information for Transgenic Constructs Used in
This Study in Fasta Format

Found at DOI: 10.1371/journal.pbio.0020271.sd004 (37 KB TXT).

Dataset S5. Sequence Information for Ahab-Predicted Modules in the
Control Regions of 48 Segmentation Genes

Data based on mg run, Fasta format.

Found at DOI: 10.1371/journal.pbio.0020271.sd005 (53 KB TXT).

Dataset S6. Profile Value Output for Ahab Mg Run

Input: Bcd, Hb, Kr, Gt, Kni, Tll, Cad, TorRE, and Dstat. Performed

over defined sequences of known modules (Dataset S3), tested
constructs (Dataset S4), and Ahab-predicted modules (Dataset S5).

Found at DOI: 10.1371/journal.pbio.0020271.sd006 (62 KB TXT).

Dataset S7. Profile Value Output for Ahab Mgpr Run

Input: Bcd, Hb, Kr, Gt, Kni, Tll, Cad, TorRE, Dstat, H, Eve_HD,
Eve_t2, Run, Ftz, Ftz-f1, Ttk, and Prd_HD. Performed over defined
sequences of known modules (Dataset S3), tested constructs (Dataset
S4), and Ahab-predicted modules (Dataset S5).

Found at DOI: 10.1371/journal.pbio.0020271.sd007 (77 KB TXT).

Accession Numbers

The FlyBase (http://flybase.bio.indiana.edu) accession numbers for the
genes and gene products discussed in this paper are Bcd
(FBgn0000166), Cad (FBgn0000251), Capicua (FBgn0028386), cnc
(FBgn0000338), D (FBgn0000411), D-Stat (FBgn0016917), Eve
(FBgn0000606), fkh (FBgn0000659), Ftz (FBgn0001077), Ftz-f1
(FBgn0001078), Gt (FBgn0001150), H (FBgn0001168), Hb
(FBgn0001180), Kni (FBgn0001320), knrl (FBgn0001323), Kr
(FBgn0001325), nub (FBgn0002970), oc (FBgn0004102), odd
(FBgn0002985), pdm2 (FBgn0004394), Prd (FBgn0003145), Run
(FBgn0003300), slp2 (FBgn0004567), Tll (FBgn0003720), TorRE (cf.
FBgn0003733), and Ttk (FBgn0003870).
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